Transversal Modulation IMS. (TM-IMS)

“Path to next-generation IMS: new concepts, advanced instrumentation, and leveraging the ion-molecule chemistry”

Guillermo Vidal-de-Miguel1,2, Myriam Macia1, Jaime Cuevas1 & Cesar Barrios1.

1 SEADM S.L.
2 Valladolid University, Energy and Fluid Mechanics Engineering Dep.
Summary

• Principle of operation:
 – One stage.
 – Higher resonances and curtain gas.
 – Two stages.

• Demonstrator TMIMS-1:
 – Architecture.
 – Resolving power.
 – Robustness

• Demonstrator TMIMS-2:
 – Architecture.
 – Background reduction.
 – IMS-IMS analysis.

• Numerical simulations.

• Conclusions.
Principle of operation: One stage.

- Ideal uniform electric fields:
 - Velocity trajectories:
 \[
 u = KE_0 \\
 v = KE_1 \sin(\Omega t)
 \]
 \[
 x = KE_0 (t - t_0) \\
 y = 2 \frac{KE_1}{\Omega} \sin \left(\frac{\Omega}{2} (t - t_0) \right) \sin \left(\frac{\Omega}{2} (t + t_0) \right)
 \]
 - Distance to the outlet slit
 \[
 Y = 2 \frac{KE_1}{\Omega} \sin \left(\frac{\Omega l}{2KE_0} \right) \sin \left(\Omega t - \frac{\Omega l}{2KE_0} \right)
 \]
 - Selection criterion:
 \[
 K' = \frac{\Omega l}{2\pi E_0}
 \]
Principle of operation: Higher resonances.

- Resonant mobilities:
 \[K_n = \frac{\Omega l}{2n\pi E_0} \]

- Curtain gas in the inlet slit acts as high mobility pass filter:
 - sweeps away low mobility ions and prevents agglomeration of resonant peaks.
- Resolving power of the high pass filter \(R > 2 \) is enough to separate \(K_1 \) and \(K_2 = K_1/2 \).
Principle of operation: Two stages.

• One stage produces a pulsed output of non desired ions:

\[Y = 2 \frac{KE_1}{\Omega} \sin \left(\frac{\Omega t}{2KE_0} \right) \sin \left(\Omega t - \frac{\Omega t}{2KE_0} \right) = 0 \]

• Two stages operated in quadrature (same frequency) eliminate the pulsed output.

• Each stage can be operated with a different gas and a different voltage
 — **IMS-IMS analysis.**
TMIMS-1: Architecture.

- One single stage.
- Nano-ESI ion source
- Electrometer detector
- IMS analysis

TMIMS-1: Resolving power (Res).

Theoretical estimation

- Ions spread due to diffusion.
 \[\sigma^2_r = 2D\tau \]
- Calculate instantaneous signal \(N(Y, \sigma_r) \)
 \[S = \frac{1}{\sqrt{2\pi\sigma_r}} e^{-\frac{1}{2\sigma_r^2}} \]
- Integrated averaged signal.
 \[\bar{S} = \int_0^{2\pi} e^{-\frac{1}{2}\left(\frac{E_1}{E_0} - 1\right)^2} A\sin^2(\theta) d\theta \]
- Reconstruct spectrum, FWHH.
 \[R_D \approx 0.187 \frac{E_1}{E_0} \sqrt{\frac{V_0e}{k_B T}} \]

Experimental results

- \(Res \) grows with the square root of the axial voltage.
- \(Res \) grows with the deflector voltage until trajectories collide with deflector electrodes.

![Graphs showing theoretical and experimental results](image-url)
TMIMS-1: Robustness.

- Electronic alignment compensates for mechanical misalignments.
 - Tolerates mechanical misalignments as high as 1mm.
 - Tolerates 5V error in mean deflector voltage.

- Transversal voltage: circles
- Longitudinal voltage: squares
- Different wave amplitude voltages: diamonds
TMIMS-2: Architecture.

- Two stages.
- Two gases.
- Nano-ESI ion source
- Electrometer detector
- IMS and IMS\(^2\) analysis
TMIMS-2: Background reduction.

- Synchronization of Stages eliminates pulsed signals

![Graph](image)
TMIMS-2: IMS2

- ESI: MeOH, H2O, THABr.
- Stage 1: N\textsubscript{2}
- Stage 2: N\textsubscript{2} with 1\% iso-propanol.

- ESI: MeOH, H2O, HCl, PETN
- Stage 1: CO\textsubscript{2}
- Stage 2: N\textsubscript{2}
Numerical simulations:

- Allow us to simulate real geometries.
 - Electric fields: Boundary Element Method.
 - Ideal convective trajectories: Runge-Kutta.
 - Diffusive model: Transversal diffusion $\sigma^2 = 2D\tau$
- Validated with TMIMS-1 and TMIMS-2.
- Used to determine optimum geometries
Conclusions

- Transversal Modulation IMS (TM-IMS) works.
- Resolving power: R=55
- Very robust.
- Duty cycle: 100%
- True mobility
- Inlet and outlet are very accessible.
- Allows IMS, IMS2 and can be deactivated.
- Operates at atmospheric pressure
 - Upstream the orifice plate.
 - Allows easy upgrading of current API-MS
- Good candidate for IMS-MS applications.
Thanks for your attention!

Contact: Guillermo Vidal-de-Miguel.
Head of the R&D team at SEADM S.L.
guillermo.vidal@seadm.com +34 983 130 154