Multistage Transversal Modulation Ion Mobility Spectrometry: Towards a High Transmission and High Resolution IMS for trap-type MS

Dr. Guillermo Vidal de Miguel.
Project Manager

guillermo.vidal@seadm.com / guillermo.vidal@org.chem.ethz.ch
Summary

• Introduction:
 – The problem: IMS-MS pulsed vs continuous
 – The solution: TMIMS (principle of operation)
 – Objectives of the development
 – TMIMS Background
 – Engineering Requirements

• New concept: TMIMS ladder

• Results

• Conclusions
IMS-MS pulsed vs continuous output.

Ion Mobility (K):
- Collision cross section.
- Shape of the molecules
- Conformation of proteins

Current IMS – MS systems in the market
- Pulsed output of ions (Drift Tube IMS, Travelling Wave IMS):
 - Peaks duration in the millisecond scale
 - Only compatible with fast MS
 - Careful integration required

- Commercialized systems integrate IMS and MS in a single system
 - Not modular
 - **Expensive systems**
 - Limited to Q-TOF

To expand IMS possibilities to all kind of existing MS → IMS with continuous output of ions
TMIMS: principle of operation

- TMIMS provides continuous output of ions

Uniform electric fields:

- Velocity \(\rightarrow \) Trajectories:
 \[u = KE_0 \]
 \[v = KE_1 \sin(\Omega t) \]
 \[x = KE_0 (t - t_0) \]
 \[y = 2 \frac{KE_1}{\Omega} \sin \left(\frac{\Omega}{2} (t - t_0) \right) \sin \left(\frac{\Omega}{2} (t + t_0) \right) \]

- Distance to the outlet slit
 \[y = 2 \frac{KE_1}{\Omega} \sin \left(\frac{\Omega l}{2KE_0} \right) \sin \left(\Omega t - \frac{\Omega l}{2KE_0} \right) \]

- Selection criterion:
 \[K = \frac{\Omega l}{2 \pi E_0} \]

- G. Vidal de Miguel, "Method and apparatus to produce steady beams of mobility selected ions via time-dependent electric fields", 61/211,111 (USPTO)
Objectives

 - Eurostars program.
 - IMS-Orbitrap \(\rightarrow\) IMS continuous output

- Goal: pre-commercial TMIMS
 - Add-on architecture (modular)
 - Can be coupled with existing API-MS
 - Can be coupled with existing Ion Sources

Diagram:

- **Ion source** → **TMIMS** (pre-filters ions according to their mobility) → **Mass Spec**
TMIMS Background

Developed TMIMS prototype, performs:
- IMS pre-filtration
- IMS-IMS pre-filtration

Previous prototypes demonstrated the viability of the technology
Still need to be improved to meet final user requirements

Engineering requirements

- Drastic reduction of the inlet voltage (from 16kV to 0V)
- Improved transmission (up to 10-20%)
- Cost
- Size
- Robustness
- Desolvation of ions
- Maximum intensity that the TMIMS can handle
- Overtones and secondary peaks must be eliminated
Summary

• Introduction
• New concept: TMIMS ladder
 - Principle of operation
 - Cell design
 - Assembly
• Results
• Conclusions
TMIMS ladder, principle of operation.

- Each stage operates with a fraction of the total voltage.
 - Simplified High Volt. Requirements.

- Ions are sequentially filtered.

- Desolvation and space charge effects affect only first stages.
 - Improved robustness

• G.Vidal de Miguel, “Transversal Modulation Ion Mobility Spectrometer with reduced voltage and improved robustness and resolving power”, USPTO
Theoretical considerations (1/2).

Ion passage criteria:

• One stage

\[|l_{e_1}/\omega \left[\sin \left(2\pi \frac{\omega}{e_1} + \varphi_1 + 2\pi \tau_0 \right) - \sin(\varphi_1 + 2\pi \tau_0) \right]| < dy \]

\[\left| l(e_2/\omega) \left[\sin \left(2\pi \frac{\omega}{e_1} + \varphi_2 + 2\pi \tau_0 \right) - \sin \left(2\pi \frac{\omega}{e_1} + \varphi_2 + 2\pi \tau_0 \right) \right] \right| < dy \]

• Two stages

\[\left| l(e_2/\omega) \left[\sin \left(2\pi \frac{\omega}{e_1} + \varphi_2 + 2\pi \tau_0 \right) - \sin \left(2\pi \frac{\omega}{e_1} + \varphi_2 + 2\pi \tau_0 \right) \right] \right| < dy \]

• Three stages

\[\left| l(e_3/\omega) \left[\sin \left(2\pi \frac{\omega}{e_1} + \varphi_3 + 2\pi \tau_0 \right) - \sin \left(2\pi \frac{\omega}{e_1} + \varphi_3 + 2\pi \tau_0 \right) \right] \right| < dy \]

• ...

• Lateral displacements are accumulated as ions traverse the ladder.
• Selected ions are sequentially focused at the slits.
• Total resolving power of the TMIMS-ladder equals conventional TMIMS with the same total voltage.

• G.Vidal de Miguel, “TMIMS ladder”, USPTO
Theoretical considerations (2/2).

- Inlet slit defines the width of the ion beam.
- Outlet slit defines maximum allowed deflections.
- Intermediate slits are broadened to improve transmission.
 - Ions are discarded only at the outlet slit.
 - Losses through intermediate slits are minimized.

• G.Vidal de Miguel, “TMIMS ladder”, USPTO
Final design:
- TMIMS ladder: 6 stages

- TMIMS ladder
 - Low Peak-to-Peak voltage
 - Reduces HV System size and cost
- Elongated envelope facilitates coupling with commercial IS
- Flow distribution (opposite direction to ions):
 - Keeps the analysis area clean of vapors
 - Helps to desolvate ions
- Resistive capillary:
 - compensates for the voltage drop.
 - enables maintaining a grounded inlet
Cell Assembly

Basic architecture and materials:
- TMIMS Ladder made of Satinless Steel and ceramics
- PEEK external insulator
- Aluminium external heating and housing

Compatible with:
- Thermo Mass Spectrometers
- Thermo Ion sources:
 - The Cell can be heated up to 200 C to facilitate desolvation.

Adjacent module:
- Provides oscillating voltages.
- Adjacent to the Cell to minimize capacitive loads.
TMIMS ladder control

Adjacent module
- Provides oscillating voltages.
- Adjacent to the Cell to minimize capacitive loads

Ion source

Control module
- Provides DC voltages.
- Temperature control
- Gas flow control

TMIMS Cell

MS
Summary

• Introduction
• New concept: TMIMS ladder architecture
• Results: Shape of the spectra.
• Conclusions
TMIMS Stages, one by one:
Coordination of the ladder:
Coordination of the ladder:
Effect of the deflector voltage
Space charge
Summary

• Introduction
• Requirements evaluation
• Architecture
• Results
• Conclusions
Conclusions & future work:

• Resolving power:
 • Very preliminary tests (a week following integration) showed a resolving power of 30:
 - Deflector voltage: **1.5 kV**. (7 times lower than the previous prototype)
 • The **predicted Resolving power is 60**:
 - An optimization of the phase and the electric field of each stage is required.

• **Cost:** • **Low cost** power electronics can be used to control the TMIMS ladder.

• Robustness & compatibility:
 - The system seems to be robust against space charge (more tests planned),
 - Robustness against partially solvated ions will be evaluated next.

• **Grounded inlet**, which facilitates coupling with regular ion sources.
 - The resistive capillary seems to work normally,
 - The transmission still requires optimization and characterization.

• **Continuous output** eases coupling with pre-existing MS: **IMS for Trap & Orbitrap**
Conclusions & future work:

• We are reducing the cost of the TMIMS.
• This will enable users to purchase an add-on IMS cell for their MS.
 - Compatible with standard Ion Sources,
 - Compatible with LC,
 - Compatible with pre-existing Mass Spectrometers.
Many thanks!

SEADM

G. Arranz C. Barrios M. Macia A. Tejero

Thermo Scientific

Eurostars™

Eurostars Programme (European Commision)

ETH Zürich

Dr. A. Makarov Dr. D. Nolting

Prof. Dr. Zenobi N. Meyer
Thank you for your attention!

Dr. Guillermo Vidal de Miguel.
Project Manager
guillermo.vidal@seadm.com / guillermo.vidal@org.chem.ethz.ch